climind.readers package
The readers package contains all the scripts needed to read the data sets. Because of the diversity of data formats, there is roughly one reader per dataset.
Most readers will import the generic_reader script which handles the selection of the appropriate reaader routines based on the metadata provided.
Individual reader scripts generally have one or more of the following functions:
read_monthly_ts
read_annual_ts
read_monthly_grid
read_monthly_5x5_grid
read_monthly_1x1_grid
Each of these function must take a list of filenames and a
CombinedMetadata
object as
inputs. These are used to read the data and create an appropriate dataset.
Submodules
climind.readers.generic_reader module
- climind.readers.generic_reader.get_last_modified_time(file: Path) Optional[str]
Get the update time of file if it exists, else None
- Parameters
file (Path) – File path of the file for which the last modified time is required
- Returns
string containing last updated time for the file or None if it does not exist
- Return type
Optional[str]
- climind.readers.generic_reader.get_module(package_name: str, script_name: str)
Get the module from the package name and the script name
- Parameters
package_name (str) – String containing the package path as a dot separated string
script_name (str) – Name of the script to import
- Returns
Returns module specified by the package name and script name
- Return type
module
- climind.readers.generic_reader.get_reader_script_name(metadata: CombinedMetadata, **kwargs) Optional[str]
Get the name of the reader function for the provided metadata combination
- Parameters
metadata (CombinedMetadata) – contains the metadata required to chose the reader script
kwargs – list of keyword arguments
- Returns
Returns the name of the reader function that will read that combination of metadata, or None
- Return type
Optional[str]
- climind.readers.generic_reader.read_ts(out_dir: Path, metadata: CombinedMetadata, **kwargs) Union[TimeSeriesMonthly, TimeSeriesAnnual, GridMonthly]
Generic reader for the data sets. This works out which reader is needed, imports and runs it. If a particular reader is not available (e.g. because the data is only a timeseries and not a grid) then it raises a not implemented error.
- Parameters
out_dir (Path) – Path of the directory in which the data are to be found
metadata (CombinedMetadata) – Metadata describing the required dataset
kwargs (dict) – Optional arguments as required for particular data sets
- Returns
Returns a TimeSeries or Grid of some kind
- Return type
Union[TimeSeriesMonthly, TimeSeriesAnnual, GridMonthly]
climind.readers.reader_aviso module
- climind.readers.reader_aviso.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesIrregular
climind.readers.reader_aviso_ftp module
- climind.readers.reader_aviso_ftp.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesIrregular
climind.readers.reader_badc_csv module
- climind.readers.reader_badc_csv.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_badc_csv.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_berkeley module
- climind.readers.reader_berkeley.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_berkeley.read_monthly_1x1_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_berkeley.read_monthly_5x5_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_berkeley.read_monthly_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
Although Berkeley Earth is 1x1 already, the time dimension is extremely non-standard. In order to get consistency with the other data sets regridded to 1x1, the data is copied into a consistent xarray Dataset.
- Parameters
filename (str) – Filename of the netcdf grid
metadata (CombinedMetadata) – CombinedMetadata object holding the dataset metadata.
- Return type
- climind.readers.reader_berkeley.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_berkeley_ts module
- climind.readers.reader_berkeley_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_berkeley_ts.read_monthly_1x1_grid(filename: List[Path], metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_berkeley_ts.read_monthly_5x5_grid(filename: List[Path], metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_berkeley_ts.read_monthly_grid(filename: List[Path], metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_berkeley_ts.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_cheng module
- climind.readers.reader_cheng.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_cheng.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_clsat module
- climind.readers.reader_clsat.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_clsat.read_monthly_grid(filename: List[Path], metadata) GridMonthly
climind.readers.reader_cmems_ph module
- climind.readers.reader_cmems_ph.read_annual_ts(filename: Path, metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_cmems_ph.read_ts(out_dir: Path, metadata: CombinedMetadata, **kwargs)
climind.readers.reader_era5 module
- climind.readers.reader_era5.find_latest(out_dir: Path, filename_with_wildcards: str) Path
Find the most recent file that matches
- Parameters
filename_with_wildcards (str) – Filename including wildcards
out_dir (Path) – Path of data directory
- climind.readers.reader_era5.get_latest_filename_and_url(filename: Path, url: str) Tuple[str, str]
Get the filename and url from a filled filename Path and URL with placeholders
- Parameters
filename (Path) – Path of filename
url (str) – URL to be replaced
- Returns
Tuple[str, str] – The filename and the url with placeholders replaced
——-
- climind.readers.reader_era5.read_annual_ts(filename: Path, metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_era5.read_grid(filename: str)
- climind.readers.reader_era5.read_monthly_1x1_grid(filename, metadata) GridMonthly
- climind.readers.reader_era5.read_monthly_5x5_grid(filename, metadata) GridMonthly
- climind.readers.reader_era5.read_monthly_grid(filename: str, metadata) GridMonthly
- climind.readers.reader_era5.read_monthly_ts(filename: Path, metadata: CombinedMetadata) TimeSeriesMonthly
- climind.readers.reader_era5.read_ts(out_dir: Path, metadata: CombinedMetadata, **kwargs)
climind.readers.reader_gcos module
- climind.readers.reader_gcos.read_annual_ts(filename: Path, metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_gcos.read_ts(out_dir: Path, metadata: CombinedMetadata, **kwargs)
climind.readers.reader_gistemp_ts module
- climind.readers.reader_gistemp_ts.build_transfer(xx: int, yy: int)
Build the transfer matrix for this 5x5 grid cell
- Parameters
xx (int) – Longitudinal index of grid cell in range 0, 71
yy (int) – Latitudinal index of grid cell in range 0, 35
- climind.readers.reader_gistemp_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_gistemp_ts.read_monthly_1x1_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
Convert 2x2 grid to 1x1 grid by copying 2x2 value into all 4 1x1 grid cells it contains
- Parameters
filename –
metadata –
- climind.readers.reader_gistemp_ts.read_monthly_5x5_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_gistemp_ts.read_monthly_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_gistemp_ts.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_gml module
- climind.readers.reader_gml.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_grace module
- climind.readers.reader_grace.find_latest(out_dir: Path, filename_with_wildcards: str) Path
- climind.readers.reader_grace.read_annual_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesAnnual
- climind.readers.reader_grace.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesMonthly
- climind.readers.reader_grace.read_ts(out_dir: Path, metadata: CombinedMetadata, **kwargs)
climind.readers.reader_gsfc module
- climind.readers.reader_gsfc.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_hadcrut_ts module
- climind.readers.reader_hadcrut_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_hadcrut_ts.read_monthly_1x1_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_hadcrut_ts.read_monthly_5x5_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_hadcrut_ts.read_monthly_grid(filename: List[Path], metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_hadcrut_ts.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_hadsst_ts module
- climind.readers.reader_hadsst_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_hadsst_ts.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_imbie module
- climind.readers.reader_imbie.read_annual_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesAnnual
- climind.readers.reader_imbie.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesMonthly
climind.readers.reader_imbie_2021_antarctica module
- climind.readers.reader_imbie_2021_antarctica.read_annual_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesAnnual
- climind.readers.reader_imbie_2021_antarctica.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesMonthly
climind.readers.reader_imbie_antarctica module
- climind.readers.reader_imbie_antarctica.read_annual_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesAnnual
- climind.readers.reader_imbie_antarctica.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesMonthly
climind.readers.reader_ipcc_ts module
- climind.readers.reader_ipcc_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
climind.readers.reader_ishii module
- climind.readers.reader_ishii.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
climind.readers.reader_jra55 module
- climind.readers.reader_jra55.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_jra55.read_grid(filename: List[Path])
- climind.readers.reader_jra55.read_monthly_1x1_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_jra55.read_monthly_5x5_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_jra55.read_monthly_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_jra55.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_kennaook module
- climind.readers.reader_kennaook.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_levitus module
- climind.readers.reader_levitus.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_levitus.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_mauna_loa module
- climind.readers.reader_mauna_loa.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_mauna_loa.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_mhw_ts module
- climind.readers.reader_mhw_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
climind.readers.reader_noaa_interim_ts module
- climind.readers.reader_noaa_interim_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_noaa_interim_ts.read_monthly_1x1_grid(filename: Path, metadata: CombinedMetadata, **kwargs) GridMonthly
- climind.readers.reader_noaa_interim_ts.read_monthly_5x5_grid(filename: List[Path], metadata: CombinedMetadata, **kwargs)
- climind.readers.reader_noaa_interim_ts.read_monthly_grid(filename: List[Path], metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_noaa_interim_ts.read_one_month(filehandle)
climind.readers.reader_noaa_ts module
- climind.readers.reader_noaa_ts.find_latest(out_dir: Path, filename_with_wildcards: str) str
Find the most recent file that matches
- Parameters
filename_with_wildcards (str) – Filename including wildcards
out_dir (Path) – Path of data directory
- climind.readers.reader_noaa_ts.read_annual_ts(filename: str, metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_noaa_ts.read_monthly_ts(filename: str, metadata: CombinedMetadata) TimeSeriesMonthly
- climind.readers.reader_noaa_ts.read_ts(out_dir: Path, metadata: CombinedMetadata)
climind.readers.reader_noaaglobaltemp module
- climind.readers.reader_noaaglobaltemp.find_latest(out_dir: Path, filename_with_wildcards: str) Path
Find the most recent file that matches
- Parameters
filename_with_wildcards (str) – Filename including wildcards
out_dir (Path) – Path of data directory
- Returns
Path of latest file that matches the filename with wildcards in the directory
- Return type
Path
- climind.readers.reader_noaaglobaltemp.get_latest_filename_and_url(filename: Path, url: str) Tuple[str, str]
Get the filename and url from a filled filename Path and URL with placeholders
- Parameters
filename (Path) – Path of filename
url (str) – URL to be replaced
- Returns
The filename and the url with placeholders replaced
- Return type
Tuple[str, str]
- climind.readers.reader_noaaglobaltemp.read_annual_ts(filename: Path, metadata: CombinedMetadata) TimeSeriesAnnual
Read in annual file
- Parameters
filename (Path) – Filename for annual file
metadata (dict) – Dictionary containing metadata
- Return type
ts.TimeSeriesAnnual
- climind.readers.reader_noaaglobaltemp.read_monthly_1x1_grid(filename: Path, metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_noaaglobaltemp.read_monthly_grid(filename: Path, metadata: CombinedMetadata) GridMonthly
- climind.readers.reader_noaaglobaltemp.read_monthly_ts(filename: Path, metadata: CombinedMetadata) TimeSeriesMonthly
Read in monthly file
- Parameters
filename (Path) – Path of monthly file
metadata (dict) – Dictionary containing metadata
- Return type
ts.TimeSeriesMonthly
- climind.readers.reader_noaaglobaltemp.read_ts(out_dir: Path, metadata: CombinedMetadata, **kwargs)
climind.readers.reader_nsidc module
- climind.readers.reader_nsidc.read_irregular_ts(filenames: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
- climind.readers.reader_nsidc.read_monthly_ts(filenames: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_osisaf module
- climind.readers.reader_osisaf.read_irregular_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesIrregular
- climind.readers.reader_osisaf.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_promice module
- climind.readers.reader_promice.read_annual_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesAnnual
- climind.readers.reader_promice.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesMonthly
climind.readers.reader_standard_grid module
- climind.readers.reader_standard_grid.read_annual_grid(filename: List[Path], metadata: CombinedMetadata) GridAnnual
climind.readers.reader_test module
- climind.readers.reader_test.read_annual_ts(filename, metadata, **kwargs)
- climind.readers.reader_test.read_monthly_1x1_grid(filename, metadata, **kwargs)
- climind.readers.reader_test.read_monthly_grid(filename, metadata, **kwargs)
- climind.readers.reader_test.read_monthly_ts(filename, metadata, **kwargs)
climind.readers.reader_wdcgg_rate_ts module
- climind.readers.reader_wdcgg_rate_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_wdcgg_rate_ts.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_wdcgg_ts module
- climind.readers.reader_wdcgg_ts.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_wdcgg_ts.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_wdcgg_ts_update module
- climind.readers.reader_wdcgg_ts_update.read_annual_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesAnnual
- climind.readers.reader_wdcgg_ts_update.read_monthly_ts(filename: List[Path], metadata: CombinedMetadata) TimeSeriesMonthly
climind.readers.reader_wgms module
- climind.readers.reader_wgms.read_annual_ts(filename: List[Path], metadata: CombinedMetadata, **kwargs) TimeSeriesAnnual