climind.stats package

Submodules

climind.stats.paragraphs module

climind.stats.paragraphs.anomaly_and_rank(all_datasets: List[TimeSeriesAnnual], year: int) str

Write a short paragraph, returned as a string, which gives the rank range and data value for the chosen year, as well as saying how many data sets and which datasets were used.

Parameters
  • all_datasets (List[TimeSeriesAnnual]) – List of datasets to be used to derive the ranks and values

  • year (int) – Year for which the paragraph should be generated.

Return type

str

climind.stats.paragraphs.anomaly_and_rank_plus_new_base(all_datasets: List[TimeSeriesAnnual], year: int) str

Write a short paragraph, returned as a string, which gives the rank range and data value for the chosen year, as well as saying how many data sets and which datasets were used. Then it adds the anomalies relative to the 1961-1990 baseline, with information about the number of datasets.

Parameters
  • all_datasets (List[TimeSeriesAnnual]) – List of datasets to be used to derive the ranks and values

  • year (int) – Year for which the paragraph should be generated.

Return type

str

climind.stats.paragraphs.antarctic_ice_paragraph(all_datasets: List[TimeSeriesMonthly], year: int) str

Generate a paragraph of some standard stats for the Antarctic sea ice: rank and value for max and min extents in the year (Feb and September).

Parameters
  • all_datasets (List[TimeSeriesMonthly]) – List of datasets on which the assessment will be based

  • year (int) – Chosen year to focus on

Returns

Paragraph of text

Return type

str

climind.stats.paragraphs.arctic_ice_paragraph(all_datasets: List[TimeSeriesMonthly], year: int) str

Generate a paragraph of some standard stats for the Arctic sea ice: rank and value for max and min extents in the year (March and September).

Parameters
  • all_datasets (List[TimeSeriesMonthly]) – List of datasets on which the assessment will be based

  • year (int) – Chosen year to focus on

Returns

Paragraph of text

Return type

str

climind.stats.paragraphs.basic_anomaly_and_rank(all_datasets: List[TimeSeriesAnnual], year: int) str
climind.stats.paragraphs.co2_paragraph(all_datasets: List[TimeSeriesAnnual], year: int, update=False) str

Generate a paragraph of some standard stats for greenhouse gases

Parameters
  • all_datasets (List[TimeSeriesAnnual]) – List of datasets on which the assessment will be based

  • year (int) – Chosen year to focus on

  • update (bool) – If set to True treat this as an update

Returns

Paragraph of text

Return type

str

climind.stats.paragraphs.co2_paragraph_update(all_datasets: List[TimeSeriesAnnual], year: int) str
climind.stats.paragraphs.compare_to_highest_anomaly_and_rank(all_datasets: List[TimeSeriesAnnual], year: int) str
climind.stats.paragraphs.dataset_name_list(all_datasets: List[Union[TimeSeriesMonthly, TimeSeriesAnnual]], year: Optional[int] = None) str

Given a list of dataset, return a comma-and-and separated list of the names.

Parameters
  • all_datasets (List[Union[TimeSeriesMonthly, TimeSeriesAnnual]]) – List of data sets whose names you want in a list

  • year (int) – If year is specified, the name list will specify to what month data are available if the year is incomplete.

Returns

A list of the dataset names separated by commas and, where appropriate, ‘and’

Return type

str

climind.stats.paragraphs.fancy_html_units(units: str) str

Convert plain text units into html fancy units, which use subscripts and special characters to render.

Parameters

units (str) – Units to be rendered into fancy units

Returns

Units in fancy html form, or unchanged.

Return type

str

climind.stats.paragraphs.get_last_month(in_str)
climind.stats.paragraphs.glacier_paragraph(all_datasets: List[Union[TimeSeriesMonthly, TimeSeriesAnnual]], year: int) str

Write the glacier paragraph :param all_datasets: list of data sets to be processed :type all_datasets: list[Union[TimeSeriesMonthly, TimeSeriesAnnual]] :param year: Year for which to do the evaluation :type year: int

Return type

str

climind.stats.paragraphs.global_anomaly_and_rank(all_datasets: List[TimeSeriesAnnual], year: int) str
Parameters
  • all_datasets

  • year

climind.stats.paragraphs.greenland_ice_sheet(all_datasets: List[TimeSeriesAnnual], year: int) str
climind.stats.paragraphs.greenland_ice_sheet_monthly(all_datasets: List[TimeSeriesMonthly], year: int) str
climind.stats.paragraphs.long_term_trend_paragraph(all_datasets: List[TimeSeriesMonthly], _) str
climind.stats.paragraphs.marine_heatwave_and_cold_spell_paragraph(all_datasets: List[TimeSeriesAnnual], year: int) str
climind.stats.paragraphs.max_monthly_value(all_datasets: List[TimeSeriesMonthly], year: int) str

Find the highest monthly data value within the chosen year and return a paragraph, as a string, which gives the value and rank for that month.

Parameters
  • all_datasets (List[TimeSeriesMonthly]) – List of datasets to be used in the evaluation

  • year (int) – Year to be analysed

Returns

Short paragraph of text

Return type

str

climind.stats.paragraphs.nice_list(names)
climind.stats.paragraphs.ordinal(n)
climind.stats.paragraphs.pre_industrial_estimate(all_datasets: List[TimeSeriesAnnual], _) str

Write a short paragraph estimating the difference between the modern baselin and 1850 to 1900.

Parameters

all_datasets (List[TimeSeriesAnnual]) – List of all the data sets to be analysed

Returns

Returns a paragraph of text stating an estimate of the pre-industrial temperature from these data sets

Return type

str

climind.stats.paragraphs.rank_ranges(low: int, high: int) str

Given an upper and lower limit on the rank, return a string which describes the range. e.g. ‘the 2nd’ or ‘between the 4th and 8th’.

Parameters
  • low (int) – Lower of the two ranks.

  • high (int) – Higher of the two ranks.

Returns

Short string which describes the range. e.g. ‘the 2nd’ or ‘between the 4th and 8th’ or similar.

Return type

str

climind.stats.paragraphs.superlative(variable)

climind.stats.utils module

climind.stats.utils.get_ranks(datasets, match_year)
climind.stats.utils.get_values(datasets, match_year)
climind.stats.utils.run_the_numbers(datasets: List[Union[TimeSeriesMonthly, TimeSeriesAnnual]], match_year: int, title: str, output_dir: Path)

Given a list of datasets calculate various statistics relating to ranking and values

Parameters
  • datasets (list) – List of data sets

  • match_year (int) – Year of interest. Stats will be calculated up to the year of interest, but note that rankings will include years after the year of interest if it is not the most recent year in the data sets

  • title (str) – name for the file

  • output_dir (Path) –

Return type

None

climind.stats.utils.table_by_year(datasets, match_year: int, years_to_show: int = 20) str